
Knowledge Representation Handouts Page 1 / 3

Knowledge Representation
Language and Conceptualization, WS 2003–2004

Dr. Sabine Bartsch
Darmstadt University of Technology

Aybala Celebi, Jean-Pierre Schwickerath, Jördis Hensen

February 11th, 2004

1 Ontology — http://www.jfsowa.com/ontology/

The subject of ontology is the study of the categories of things that exist or may exist in some
domain.
The product of such a study, called an ontology , is a catalog of the types of things that are
assumed to exist in a domain of interest D from the perspective of a person who uses a language
L for the purpose of talking about D.
The types in the ontology represent the predicates, word senses, or concept and relation types
of the language L when used to discuss topics in the domain D.
An uninterpreted logic, such as predicate calculus, conceptual graphs, or KIF, is ontologically
neutral. It imposes no constraints on the subject matter or the way the subject may be character-
ized. By itself, logic says nothing about anything, but the combination of logic with an ontology
provides a language that can express relationships about the entities in the domain of interest.
An informal ontology may be specified by a catalog of types that are either undefined or defined
only by statements in a natural language. A formal ontology is specified by a collection of
names for concept and relation types organized in a partial ordering by the type-subtype relation.
Formal ontologies are further distinguished by the way the subtypes are distinguished from their
supertypes: an axiomatized ontology distinguishes subtypes by axioms and definitions stated
in a formal language, such as logic or some computer-oriented notation that can be translated
to logic; a prototype-based ontology distinguishes subtypes by a comparison with a typical
member or prototype for each subtype. Large ontologies often use a mixture of definitional
methods: formal axioms and definitions are used for the terms in mathematics, physics, and
engineering; and prototypes are used for plants, animals, and common household items.

Erdmann applied the method of formal concept analysis (FCA), developed by Bernhard Ganter
and Rudolf Wille (TU-Darmstadt) (1999) and implemented in an automated tool called Toscana.

ALIGNMENT A mapping of concepts and relations between two ontologies A and B that pre-
serves the partial ordering by subtypes in both A and B. If an alignment maps a concept
or relation x in ontology A to a concept or relation y in ontology B, then x and y are said to
be equivalent . The mapping may be partial: there could be many concepts in A or B that
have no equivalents in the other ontology. Before two ontologies A and B can be aligned,
it may be necessary to introduce new subtypes or supertypes of concepts or relations
in either A or B in order to provide suitable targets for alignment. No other changes to
the axioms, definitions, proofs, or computations in either A or B are made during the pro-
cess of alignment. Alignment does not depend on the choice of names in either ontology.
For example, an alignment of a Japanese ontology to an English ontology might map the
Japanese concept Go to the English concept Five. Meanwhile, the English concept for the
verb go would not have any association with the Japanese concept Go.



Knowledge Representation Handouts Page 2 / 3

AXIOMATIZED ONTOLOGY A terminological ontology whose concept and relation types are
distinguished by axioms and definitions that are stated in logic or in some computer-
oriented language that could be automatically translated to logic. There is no restric-
tion on the complexity of the logic that may be used to state the axioms and definitions.
The distinction between terminological and axiomatized ontologies is one of degree rather
than kind. Axiomatized ontologies tend to be smaller than terminological ontologies, but
their axioms and definitions can support more complex inferences and computations. Ex-
amples of axiomatized ontologies include formal theories in science and mathematics,
the collections of rules and frames in an expert system, and specifications of conceptual
schemas in languages like SQL.

DIFFERENTIAE The properties that distinguish a subtype from other types that have a com-
mon supertype. The term comes from Aristotle’s method of defining new types by stating
the genus or supertype and stating the properties that distinguish the new type from its su-
pertype. Aristotle’s method of definition has become the de facto standard for natural lan-
guage dictionaries, and it is also widely used for AI knowledge bases and object-oriented
programming languages.

KNOWLEDGE BASE An informal term for a collection of information that includes an ontol-
ogy as one component. Besides an ontology, a knowledge base may contain information
specified in a declarative language such as logic or expert-system rules, but it may also
include unstructured or unformalized information expressed in natural language or proce-
dural code.

MIXED ONTOLOGY An ontology in which some subtypes are distinguished by axioms and
definitions, but other subtypes are distinguished by prototypes. The top levels of a mixed
ontology would normally be distinguished by formal definitions, but some of the lower
branches, such as plants, animals, and common household objects might be distinguished
by prototypes.

PROTOTYPE-BASED ONTOLOGY A terminological ontology whose types and subtypes are
distinguished by prototypes rather than definitions and axioms in a formal language. Be-
fore a prototype-based ontology can be considered formal, there must be some method
for measuring the similarity of any two entities that can be classified according to the types
of the ontology. Given such a measure, every type t in the ontology must be assigned a
prototype or typical instance p. Then an entity x can classified by the following recursive
procedure:

• Suppose that x has been classified as an instance of some type t, which has subtypes
s sub 1 , ... , s sub n.

• Measure the similarity of x to the prototypes p sub 1 , ... , p sub n for each subtype
of t.

• Classify x as an instance of that subtype s sub i whose prototype p sub i is most
similar to x by the measure used for the ontology.

For any entity x, this procedure is invoked with x compared to the immediate subtypes
of the universal type =BE. After x has been classified as an instance of any type t, the
procedure is invoked recursively to classify x further as some subtype of t. The procedure
stops when x is classified as an instance of a type whose only proper subtype is the absurd
type =CA.

TERMINOLOGICAL ONTOLOGY An ontology whose concepts and relations need not be fully
specified by axioms and definitions that determine the necessary and sufficient condi-
tions for their use. The concepts may be partially specified by relations such as subtype-
supertype or part-whole, which determine the relative positions of the concepts with re-
spect to one another, but which do not completely define them. Although a terminological
ontology may be expressed in logic, the versions of logic required are usually simpler, less
expressive, and more easily computable than full first-order predicate calculus.



Knowledge Representation Handouts Page 3 / 3

2 KIF — http://logic.stanford.edu/kif/dpans.html

This dpANS specifies the syntax and semantics of Knowledge Interchange Format (KIF) and a
syntactic variant of KIF in “infix” form.
Knowledge Interchange Format (KIF) is a language designed for use in the interchange of
knowledge among disparate computer systems (created by different programmers, at different
times, in different languages, and so forth).
KIF is not intended as a primary language for interaction with human users (though it can be
used for this purpose). Different computer systems can interact with their users in whatever
forms are most appropriate to their applications (for example Prolog, conceptual graphs, natural
language, and so forth).
KIF is also not intended as an internal representation for knowledge within computer systems
or within closely related sets of computer systems (though the language can be used for this
purpose as well). Typically, when a computer system reads a knowledge base in KIF, it converts
the data into its own internal form (specialized pointer structures, arrays, etc.). All computation
is done using these internal forms. When the computer system needs to communicate with
another computer system, it maps its internal data structures into KIF.
The purpose of KIF is roughly analogous to that of Postscript. Postscript is commonly used by
text and graphics formatting systems in communicating information about documents to print-
ers. Although it is not as efficient as a specialized representation for documents and not as
perspicuous as a specialized wysiwyg display, Postscript is a programmer-readable represen-
tation that facilitates the independent development of formatting programs and printers. While
KIF is not as efficient as a specialized representation for knowledge nor as perspicuous as a
specialized display (when printed in its list form), it too is a programmer-readable language and
thereby facilitates the independent development of knowledge-manipulation programs.
The following categorical features are essential to the design of KIF.

1. The language has declarative semantics. It is possible to understand the meaning of ex-
pressions in the language without appeal to an interpreter for manipulating those expres-
sions. In this way, KIF differs from other languages that are based on specific interpreters,
such as Emycin and Prolog.

2. The language is logically comprehensive – at its most general, it provides for the expres-
sion of arbitrary logical sentences. In this way, it differs from relational database languages
(like SQL) and logic programming languages (like Prolog).

3. The language provides for the representation of knowledge about knowledge. This allows
the user to make knowledge representation decisions explicit and permits the user to
introduce new knowledge representation constructs without changing the language.

In addition to these essential features, KIF is designed to maximize the following additional
features (to the extent possible while preserving the preceding features).

1. Implementability. Although KIF is not intended for use within programs as a representation
or communication language, it should be usable for that purpose if so desired.

2. Readability. Although KIF is not intended primarily as a language for interaction with hu-
mans, human readability facilitates its use in describing representation language seman-
tics, its use as a publication language for example knowledge bases, its use in assisting
humans with knowledge base translation problems, etc.


